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Recently Liu and Simaan (2004) convex static multi-team classical games have been
introduced. Here they are generalized to both nonconvex, dynamic and quantum games.
Puu’s incomplete information dynamical systems are modified and applied to Cournot
team game. The replicator dynamics of the quantum prisoner’s dilemma game is also
studied.
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1. QUANTUM GAMES

Quantum (Orlin Grabbe, 2005) is a generalization of classical games where
quantum mechanics techniques are used. It has two main advantages to classical
game: The first is the superposition between possible strategies. Thus in the
prisoner’s dilemma PD case where the classical strategies are cooperate (C) or
defect (D) the quantum PD (QPD) admits a strategy of the form aC + bD where
a, b are complex constants. The second advantage of quantum games over classical
ones is entanglement which can be understood as a kind of communications
between the players thus changing the game from noncooperative into cooperative.
Mathematically this means that the initial state of the classical PD game can
be {CC, CD, DC, DD} i.e., the both players cooperate, or the first cooperate
while the second defect or the first defect while the second cooperate or both
players defect. In the quantum game the possible states are any linear combination
between the above 4-states. Of particular importance are the entangled states
which by definition cannot be written as tensor product of the corresponding
Hilbert-space of strategies e.g., the state a|CC〉 + b|CD〉 can be factored in the
form C ⊗ (a|C〉 + b|D〉) thus it is not entangled while the state a|CC〉 + b|DD〉 is
entangled. These entangled states allow more degrees of freedom and allows one to
solve some of the dilemmas faced in classical games (Orlin Grabbe, 2005). Since
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we are interested in both evolutionary stable games (Hofbauer and Sigmund, 1998)
and Cournot game (Gibbons, 1992) we will review, their quantum formulations.
The study of quantum evolutionary game using replicator dynamics (Iqbal and
Noor, 2004) for a 2-strategy game begins with the payoff matrix, � = [ a11 a12

a21 a22 ].
Assume the initial state is in the form

|ψinitial〉 =
2∑

i,j=1

cij |ij 〉,
2∑

ij=1

|cij |2 = 1

where cij , i, j = 1, 2 are complex constants. The replicator equation thus takes
the form

dx/dt = x(1 − x){[(a11 − a21)(|c12|2 − |c22|2) + (a22 − a12)(|c21|2 − |c11|2)]

+ x[(a21 + a12 − a11 − a22)(|c21|2 + |c12|2 − |c22|2 − |c11|2)]} (1)

where x is the fraction of adopters of the strategy 1. This equation is a generalization
of the one in (Iqbal and Noor, 2004) for the general payoff matrix �.

Applying the above formalism to the prisoner’s dilemma game PD one gets
� = [ 3 0

5 1 ] and assume the initial state to be the entangled state a|CC〉 + b|DD〉
where |a|2 + |b|2 = 1, one finally gets

dx/dt = x(1 − x)[−x + (2 − 3 |a|2)] (2)

Now the superiority of quantum games over classical one appears: The equilibrium
solutions of (2) are x = 0, 1, 2/3|a|2 (if 1/3 < |a|2 < 2/3). The first solution
x = 0 corresponds to the classical game solution where all players defect. It is
asymptotically stable if 1 ≥ |a|2〉2/3. The second solution x = 1 corresponds to
the solution of the dilemma where all players cooperate and it is asymptotically
stable if |a|2 < 1/3. The mixed solution where some players defect and others
cooperate exist and is asymptotically stable if 1/3 < |a|2 < 2/3.

It is important to note that the concept of asymptotic stability is necessary
for evolutionary stability. Moreover in the case of asymmetric games, it is well
defined while evolutionary stability is not (Hofbauer and Sigmund, 1998).

Now Cournot game (Gibbons, 1992) is studied. In this game, the market is
controlled by a few number of competing firms producing similar goods. Assume
that production decisions are taken at discrete time steps t = 0, 1, 2, . . . to deter-
mine the quantities qt

i produced by the ith firm at time t. Let ci be the cost of a unit
produced by the ith firm. Assume that the system under consideration consists of
two teams each consisting of two firms. The profit functions of the firms are given
by

�t
i = qt

i [a − ci − bQt ],Qt =
2∑

i=1

qt
i
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The quantum static t = 0 Cournot game has been studied (Li et al., 2002) and the
payoff functions are

�t
1 = (qt

1 cosh γ + qt
2 sinh γ )(a − c1 − b exp(γ )Qt )

�t
2 = (qt

2 cosh γ + qt
1 sinh γ )(a − c2 − b exp(γ )Qt )

(3)

where γ is the entanglement parameter. In the next section classical games
will be generalized to dynamic team games using bounded rationality ap-
proach. In Section 3 Puu’s incomplete information approach to dynamical
games will be introduced, modified and applied to the quantum team Cournot
game.

2. CLASSICAL TEAM GAME

Recently Liu and Simaan (2004) convex static multi-team games have been
introduced. In these games there are several teams, each team consists of some
players.

The important concept is noninferior Nash strategy (NNS) which is Pareto
optimal if the players belong to the same team and Nash optimal if they belong to
different teams. For the case of games with convex payoffs this is done as follows:
Let �X

i be the convex payoff of the player i in the team X. Then the team’s payoff
is given by

�X =
∑

i

ωX
i �X

i , 1 ≥ ωX
i ≥ 0,

∑
i

ωX
i = 1 (4)

For the case of continuous games NNS is obtained by

∂�X/∂uX
i = 0

where uX
i is the control parameter of player i in the team X.

This is an important work which is relevant to many realistic systems. How-
ever many real systems have nonconvex payoffs e.g., Cournot game (Gibbons,
1992). Consider two teams each consisting of two firms. As an example consider
two branches of Kentucky fast food resturants competing against two branches of
MacDonalds. The profit functions of the firms are given by

�X=1
1 = q1[a − b1Q] − c1q1, Q =

4∑
i=1

qi

�X=1
2 = q2[a − b2Q] − c2q2

�X=2
3 = q3[a − b3Q] − c3q3

�X=2
4 = q4[a − b4Q] − c4q4

(5)
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It is clear that the generic form of the profit function � = q(a − bq) is nonconvex
hence the previous construction needs to be modified to include static Cournot
game.

We propose that players in the same team share some of their payoffs with
their teammates. Hence the final payoff of the first player (i = 1) of the first team
(X = 1) is

�Team1
1 = (

1 − εX=1
12 − εX=1

13 − · · · − εX=1
1,n1

)
�X=1

1

+ εX=1
21 �X=1

2 + · · · + εX=1
n1,1 �X=1

n1

where 1 > εX
ij > 0,

( ∑
i ε

X
ij

)
< 1,

( ∑
j ε

X
ij

)
< 1.

In general the final payoff of the ith player in the team X is

�TeamX
i =

(
1 −

∑
j �=i

εX
ij

)
�X

i +
∑
j �=i

εX
ji�

X
j (6)

Now to find NNS for nonconvex game one solves the system

∂�TeamX
i /∂uX

i = 0.

This formulation can be generalized to the dynamical case using Puu’s approach
(Puu, 1991) with bounded rationality. The corresponding dynamical system for
Cournot game becomes

qt+1
i = qt

i + αi(qt
i )∂�Team1

i /∂qt
i , i = 1, 2

qt+1
i = qt

i + αi(qt
i )∂�Team2

i /∂qt
i , i = 3, 4

(7)

The factor αi(qt
i ) in the equations indicates that in the case ∂�i/∂qt

i > 0 bigger
firms has a greater capacity to increase production (Bischi and Naimzada, 1999).

For simplicity, we begin with one team and take αi = α = 1, bi = b, i =
1, 2 hence we get the following system

qt+1
1 = qt

1 + (1 − ε1)
[
a − b.Q − c1 − bqt

i

] − ε2bqt
2

qt+1
2 = qt

2 + (1 − ε2)
[
a − b.Q − c2 − bqt

2

] − ε1bqt
1

The equilibrium solution for the above system is

q1 = [(1 − ε2)/b(3 − ε1 − ε2)]{a − c2 + 2(c2 − c1)(1 − ε1)/(1 − ε1 − ε2)}
q2 = [(1 − ε1)/b(3 − ε1 − ε2)]{a − c1 − 2(c2 − c1)(1 − ε2)/(1 − ε1 − ε2)}

(8)
which is locally asymptotically stable if both the following conditions are satisfied:

2 > b(2 − ε1 − ε2) > 0, 4 > b2(1 − ε1 − ε2)(3 − ε1 − ε2). (9)
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3. PUU’S INCOMPLETE INFORMATION DYNAMICAL SYSTEM

Recently (Puu, 1995) has proposed an alternative to the bounded rationality
approach (6) as follows:

qt+1
i = qt

i + α
(
�t

i − �t−1
i

)
/
(
qt

i − qt−1
i

)
(10)

We propose to call (10) Puu’s incomplete information dynamical system. It has a
main advantage that it is realistic since a firm does not need to know the form of the
profit function to get an estimate of the quantity qt

i next time step. Instead all what
it needs is its profits and the quantities it has produced in the past two time steps.
However, it has a serious problem in that the system (10) is numerically unstable
as it approach equilibrium. There is no guarantee that the rate of convergence
of the profits will be faster than or equal to that of q(i, t). In fact in the case of
duopoly this causes serious instabilities of the system (10). Therefore, we propose
the following modified system:

Xt
i = (

�t
i − �t−1

i

)
/
(
qt

i − qt−1
i

)

if Xt
i > .1qt

i then set Xt
i = .1qt

i

if Xt
i < −.1qt

i then set Xt
i = −.1qt

i

qt+1
i = qt

i + αXt
i (11)

This system allows a change in qt
i of up to 10% per time step which is both realistic

and avoids the singularities of (10).
Now we present Puu’s incomplete information dynamical system for Cournot

monopoly (i.e., one firm). Assuming �(t) = q(t)(a − bq(t)) then (10) becomes

q(t + 1) = q(t) + α[a − c − b(q(t) + q(t − 1))] (12)

which is free from singularities. The equilibrium solution is q = (a − c)/(2b)
which is locally asymptotically stable if 0 < αb < 3.

These results shed light on the case of Cournot duopoly (i.e., two firms). In
this case there are two possibilities: Either the two firms are different enough such
that eventually only one firm persists while the quantity produced by the other
tends to zero. In this case, one regains the case of monopoly. The other possibility
is that the two firms are close enough that they both persist. In this case the system
(11) for duopoly can be approximated by setting qt

1 ≈ qt
2 hence we get

qt+1
1 = qt

1 + α
[
a − c1 − 2b

(
qt

1 + qt−1
1

)]

qt+1
2 = qt

2 + α
[
a − c2 − 2b

(
qt

2 + qt−1
2

)] (13)

The equilibrium solution of (13) is ((a − c1)/4b, (a − c2)/4b) and it is locally
asymptotically stable if 0 < αb < 3/2. This does not imply that it is an equilibrium
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point for (11) but it will be close to its attracting set. Moreover, since a change of
up to 10% is allowed in (11) we have:

Proposition 1. If the system (11) for Cournot duopoly admits an internal solution
and if 0 < αb < 3/2 then it has an attracting set which contains the set

{(a − c1)(1 ± .1)/4b, (a − c2)(1 ± .1)/4b} (14)

Numerical simulations have agreed with this result.

Now we formulate the dynamic quantum team Cournot game using Puu’s
incomplete information approach. Consider a team of two players. The team payoff
functions are

�Team
1 (t) = (1 − ε1)�t

1 + ε2�
t
2, �Team

2 (t) = (1 − ε2)�t
2 + ε1�

t
1 (15)

where �t
1, �t

2 are given by (3). The dynamical equations are given by (11). There
are two possibilities: Either the two firms are different enough such that eventually
only one firm persists while the quantity produced by the other tends to zero. In
this case one regains the case of monopoly and there is no more teams. The other
possibility is that the two firms are close enough that they both persist. In this case
the system (11) for duopoly can be approximated by setting qt

1 ≈ qt
2 hence we get

the system

qt+1
1 = qt

1 + α
{
exp(γ )[(1 − ε1)(a − c1) + ε2(a − c2)]

− 2 exp(2γ )
(
qt

1 + qt−1
1

)
(1 − ε1 + ε2)

}

qt+1
2 = qt

2 + α
{
exp(γ )[(1 − ε2)(a − c2) + ε1(a − c1)]

− 2 exp(2γ )
(
qt

21 + qt−1
2

)
(1 − ε2 + ε1)

}

The equilibrium solution of the above system is q∗
1 = exp(−g)[(1 − exp1)(a −

c1) + exp2(a − c2)]/[2(1 − exp1 + exp2)],

q∗
1 = exp(−γ )[(1 − ε1)(a − c1) + ε2(a − c2)]/[2(1 − ε1 + ε2)]

q∗
2 = exp(−γ )[(1 − ε2)(a − c2) + ε1(a − c1)]/[2(1 − ε2 + ε1)]

(16)

This solution is asymtotically stable if

1 > 2α exp(γ )(1 − ε1 + ε2) > 0, 1 > 2α exp(γ )(1 − ε2 + ε1) > 0 (17)

Thus we have

Proposition 2. If the system (11) for the quantum team Cournot game admits
an internal solution (16) and if the conditions (17) are satisfied then it has an
attracting set which contains the set q∗

1 (1 ± .1), q∗
2 (1 ± .1).
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Summarizing, quantum PD game using replicator dynamics is studied. Liu
and Simaan (2004) static team game is generalized to quantum dynamic Cournot
(nonconvex) game.
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